Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.

Identifieur interne : 003318 ( Main/Exploration ); précédent : 003317; suivant : 003319

Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.

Auteurs : Angelika Mustroph [États-Unis] ; Seung Cho Lee ; Teruko Oosumi ; Maria Eugenia Zanetti ; Huijun Yang ; Kelvin Ma ; Arbi Yaghoubi-Masihi ; Takeshi Fukao ; Julia Bailey-Serres

Source :

RBID : pubmed:20097791

Descripteurs français

English descriptors

Abstract

High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.

DOI: 10.1104/pp.109.151845
PubMed: 20097791
PubMed Central: PMC2832244


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.</title>
<author>
<name sortKey="Mustroph, Angelika" sort="Mustroph, Angelika" uniqKey="Mustroph A" first="Angelika" last="Mustroph">Angelika Mustroph</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521</wicri:regionArea>
<wicri:noRegion>California 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Cho" sort="Lee, Seung Cho" uniqKey="Lee S" first="Seung Cho" last="Lee">Seung Cho Lee</name>
</author>
<author>
<name sortKey="Oosumi, Teruko" sort="Oosumi, Teruko" uniqKey="Oosumi T" first="Teruko" last="Oosumi">Teruko Oosumi</name>
</author>
<author>
<name sortKey="Zanetti, Maria Eugenia" sort="Zanetti, Maria Eugenia" uniqKey="Zanetti M" first="Maria Eugenia" last="Zanetti">Maria Eugenia Zanetti</name>
</author>
<author>
<name sortKey="Yang, Huijun" sort="Yang, Huijun" uniqKey="Yang H" first="Huijun" last="Yang">Huijun Yang</name>
</author>
<author>
<name sortKey="Ma, Kelvin" sort="Ma, Kelvin" uniqKey="Ma K" first="Kelvin" last="Ma">Kelvin Ma</name>
</author>
<author>
<name sortKey="Yaghoubi Masihi, Arbi" sort="Yaghoubi Masihi, Arbi" uniqKey="Yaghoubi Masihi A" first="Arbi" last="Yaghoubi-Masihi">Arbi Yaghoubi-Masihi</name>
</author>
<author>
<name sortKey="Fukao, Takeshi" sort="Fukao, Takeshi" uniqKey="Fukao T" first="Takeshi" last="Fukao">Takeshi Fukao</name>
</author>
<author>
<name sortKey="Bailey Serres, Julia" sort="Bailey Serres, Julia" uniqKey="Bailey Serres J" first="Julia" last="Bailey-Serres">Julia Bailey-Serres</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20097791</idno>
<idno type="pmid">20097791</idno>
<idno type="doi">10.1104/pp.109.151845</idno>
<idno type="pmc">PMC2832244</idno>
<idno type="wicri:Area/Main/Corpus">003322</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003322</idno>
<idno type="wicri:Area/Main/Curation">003322</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003322</idno>
<idno type="wicri:Area/Main/Exploration">003322</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.</title>
<author>
<name sortKey="Mustroph, Angelika" sort="Mustroph, Angelika" uniqKey="Mustroph A" first="Angelika" last="Mustroph">Angelika Mustroph</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521</wicri:regionArea>
<wicri:noRegion>California 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Cho" sort="Lee, Seung Cho" uniqKey="Lee S" first="Seung Cho" last="Lee">Seung Cho Lee</name>
</author>
<author>
<name sortKey="Oosumi, Teruko" sort="Oosumi, Teruko" uniqKey="Oosumi T" first="Teruko" last="Oosumi">Teruko Oosumi</name>
</author>
<author>
<name sortKey="Zanetti, Maria Eugenia" sort="Zanetti, Maria Eugenia" uniqKey="Zanetti M" first="Maria Eugenia" last="Zanetti">Maria Eugenia Zanetti</name>
</author>
<author>
<name sortKey="Yang, Huijun" sort="Yang, Huijun" uniqKey="Yang H" first="Huijun" last="Yang">Huijun Yang</name>
</author>
<author>
<name sortKey="Ma, Kelvin" sort="Ma, Kelvin" uniqKey="Ma K" first="Kelvin" last="Ma">Kelvin Ma</name>
</author>
<author>
<name sortKey="Yaghoubi Masihi, Arbi" sort="Yaghoubi Masihi, Arbi" uniqKey="Yaghoubi Masihi A" first="Arbi" last="Yaghoubi-Masihi">Arbi Yaghoubi-Masihi</name>
</author>
<author>
<name sortKey="Fukao, Takeshi" sort="Fukao, Takeshi" uniqKey="Fukao T" first="Takeshi" last="Fukao">Takeshi Fukao</name>
</author>
<author>
<name sortKey="Bailey Serres, Julia" sort="Bailey Serres, Julia" uniqKey="Bailey Serres J" first="Julia" last="Bailey-Serres">Julia Bailey-Serres</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Chlamydomonas (genetics)</term>
<term>Chlamydomonas (metabolism)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Comparative Genomic Hybridization (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hypoxia (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Biologie informatique (MeSH)</term>
<term>Chlamydomonas (génétique)</term>
<term>Chlamydomonas (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Hybridation génomique comparative (MeSH)</term>
<term>Hypoxie (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Oxygène (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chlamydomonas</term>
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chlamydomonas</term>
<term>Oryza</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Chlamydomonas</term>
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chlamydomonas</term>
<term>Oryza</term>
<term>Oxygène</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Comparative Genomic Hybridization</term>
<term>Computational Biology</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Hypoxia</term>
<term>Species Specificity</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Biologie informatique</term>
<term>Gènes de plante</term>
<term>Hybridation génomique comparative</term>
<term>Hypoxie</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20097791</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>152</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.</ArticleTitle>
<Pagination>
<MedlinePgn>1484-500</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.151845</ELocationID>
<Abstract>
<AbstractText>High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mustroph</LastName>
<ForeName>Angelika</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Seung Cho</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oosumi</LastName>
<ForeName>Teruko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zanetti</LastName>
<ForeName>Maria Eugenia</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Huijun</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Kelvin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yaghoubi-Masihi</LastName>
<ForeName>Arbi</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fukao</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bailey-Serres</LastName>
<ForeName>Julia</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002696" MajorTopicYN="N">Chlamydomonas</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055028" MajorTopicYN="N">Comparative Genomic Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000860" MajorTopicYN="N">Hypoxia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20097791</ArticleId>
<ArticleId IdType="pii">pp.109.151845</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.151845</ArticleId>
<ArticleId IdType="pmc">PMC2832244</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Comp Physiol B. 2008 Jan;178(1):77-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17828398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 9;47(49):12939-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18998707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(5):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1993 Apr;74(4):1622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8390438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Mar 28;45(12):3912-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16548518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jun 14;296(5575):2026-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2005 Jul;206(3):291-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15906272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2007;69:145-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(4):576-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19392705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Mar;25(3):507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18187560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Sep 11;105(6):537-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 20;460(7258):1026-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19693083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Mar;17(3):292-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15000396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Mar;3(3):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Sep;21(18):6161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jan;72(1-2):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 May;25(10):4075-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2007 Sep;131(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16814-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 31;282(35):25475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Sep;96(4):717-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Nov;17(11):1614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009;2(91):ra61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19809091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2006 May 16;25(3):435-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2006 Mar;3(3):187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Mar;3(3):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Dec;55(408):2625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8790358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2008 Oct 7;71(4):391-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18718564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):280-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2009 Apr;9(2):96-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jan;103(2):269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2006 Mar 13;25(1):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):R80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1130-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19608989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 8;278(32):29837-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91 Spec No:143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 May;7(5):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18326586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Feb;187(3):1135-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(9):3514-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2003 Jun;9(6):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12778165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Sep 15;24(18):2044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 23;448(7156):938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Aug 18;361(3):399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):41-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2005 Oct 20;92(2):147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15988767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2009 Jul 23;114(4):844-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2004;3:Article3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Dec;4(12):e1000293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2008 Nov;29(11):2013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Jan;11(1):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19043406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Apr;12(2):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1860-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2008 Dec;8(12):967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):781-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Jun;10(3):303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Genomics. 2009 Mar 25;2:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Aug 23;329(1-2):51-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8354408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17519032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Jun;1773(6):880-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17442415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Apr;26(7):2817-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2021-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16816135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 10;442(7103):705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 May;13(5):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):810-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1069-1076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1724-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:2408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2008 Feb;6(2):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(7):R57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Sep;9(9):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):306-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Sep;96(4):507-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Sep;2(5):368-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jul;31(7):1029-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):218-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20580-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2398-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Feb;3(2):e22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2007 May;7(3):177-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Nov 1;17(21):2614-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 May;48(3):833-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:313-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Jul;13(7):1116-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Jan;184(1):250-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Jul 1;405(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 May;26(5):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18454138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Eng. 2006 Nov;12(11):3135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17518628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jul;65(1):153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1999;61:243-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10099689</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bailey Serres, Julia" sort="Bailey Serres, Julia" uniqKey="Bailey Serres J" first="Julia" last="Bailey-Serres">Julia Bailey-Serres</name>
<name sortKey="Fukao, Takeshi" sort="Fukao, Takeshi" uniqKey="Fukao T" first="Takeshi" last="Fukao">Takeshi Fukao</name>
<name sortKey="Lee, Seung Cho" sort="Lee, Seung Cho" uniqKey="Lee S" first="Seung Cho" last="Lee">Seung Cho Lee</name>
<name sortKey="Ma, Kelvin" sort="Ma, Kelvin" uniqKey="Ma K" first="Kelvin" last="Ma">Kelvin Ma</name>
<name sortKey="Oosumi, Teruko" sort="Oosumi, Teruko" uniqKey="Oosumi T" first="Teruko" last="Oosumi">Teruko Oosumi</name>
<name sortKey="Yaghoubi Masihi, Arbi" sort="Yaghoubi Masihi, Arbi" uniqKey="Yaghoubi Masihi A" first="Arbi" last="Yaghoubi-Masihi">Arbi Yaghoubi-Masihi</name>
<name sortKey="Yang, Huijun" sort="Yang, Huijun" uniqKey="Yang H" first="Huijun" last="Yang">Huijun Yang</name>
<name sortKey="Zanetti, Maria Eugenia" sort="Zanetti, Maria Eugenia" uniqKey="Zanetti M" first="Maria Eugenia" last="Zanetti">Maria Eugenia Zanetti</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Mustroph, Angelika" sort="Mustroph, Angelika" uniqKey="Mustroph A" first="Angelika" last="Mustroph">Angelika Mustroph</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003318 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003318 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20097791
   |texte=   Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20097791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020